National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Behavior of concrete at high temperatures
Dvořáková, Michaela ; Bruckner,, Dipl Heinrich (referee) ; Bodnárová, Lenka (advisor)
The aim of this diploma thesis is to focus on the resistance of concrete exposed to high temperatures especially with focus of resistance against explosive spalling as well as clarifying the mode of action of various types of polypropylene fibres. The theoretical part is an introduction to the issues of explosive spalling, its mechanisms and majority influencing factors. Further description of the processes taking place in the structure of concrete under extreme thermal load, distribution and size of pores in concrete, thermal load, temperature-time curves and their applications, methods of elimination of negative behaviour of concrete exposed to thermal loading (passive and active methods), mode of action of polypropylene fibres and more is also included in the theoretical part. The main aim of experimental part is to verify the function of polypropylene fibers of various Melt Flow Indexes (MFI) and dosage. Primarily, the test samples with content of the PP-fibers are compared to the reference sample without fibers. Secondarily, the samples with standard PP-fibers (with MFI 25) with dosage 2.0 kg/m3 are compared to samples with modified PP-fiber (with MFI 2500) of dosage 0.9 kg/m3. Photogrammetric images were used for evaluation and comparison of spalled surfaces and its depth. Determination of the softening temperature and melting point of the modified and standard PP-fibers was made by using a high temperature microscope video. The second part of the experimental work was to define concrete permeability at different temperatures and pressures. Permeability was measured at temperatures of 20°C, 90°C, 150°C, 175°C, 200°C, 225°C and 250°C and at pressure of 0.2, 0.4 and 0.6 MPa.
Behavior of concrete at high temperatures
Dvořáková, Michaela ; Bruckner,, Dipl Heinrich (referee) ; Bodnárová, Lenka (advisor)
The aim of this diploma thesis is to focus on the resistance of concrete exposed to high temperatures especially with focus of resistance against explosive spalling as well as clarifying the mode of action of various types of polypropylene fibres. The theoretical part is an introduction to the issues of explosive spalling, its mechanisms and majority influencing factors. Further description of the processes taking place in the structure of concrete under extreme thermal load, distribution and size of pores in concrete, thermal load, temperature-time curves and their applications, methods of elimination of negative behaviour of concrete exposed to thermal loading (passive and active methods), mode of action of polypropylene fibres and more is also included in the theoretical part. The main aim of experimental part is to verify the function of polypropylene fibers of various Melt Flow Indexes (MFI) and dosage. Primarily, the test samples with content of the PP-fibers are compared to the reference sample without fibers. Secondarily, the samples with standard PP-fibers (with MFI 25) with dosage 2.0 kg/m3 are compared to samples with modified PP-fiber (with MFI 2500) of dosage 0.9 kg/m3. Photogrammetric images were used for evaluation and comparison of spalled surfaces and its depth. Determination of the softening temperature and melting point of the modified and standard PP-fibers was made by using a high temperature microscope video. The second part of the experimental work was to define concrete permeability at different temperatures and pressures. Permeability was measured at temperatures of 20°C, 90°C, 150°C, 175°C, 200°C, 225°C and 250°C and at pressure of 0.2, 0.4 and 0.6 MPa.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.